Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
World J Urol ; 42(1): 256, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656636

RESUMO

INTRODUCTION: We evaluated the prognostic role of pre-salvage prostate-specific membrane antigen-radioguided surgery (PSMA-RGS) serum levels of alkaline phosphatase (AP), carcinoembryonic antigen (CEA), lactate dehydrogenase (LDH), and neuron-specific enolase (NSE). MATERIALS AND METHODS: Patients who consecutively underwent PSMA-RGS for prostate cancer (PCa) oligorecurrence between January 2019 and January 2022 were selected. Biomarkers were assessed one day before surgery. Cox regression and logistic regression models tested the relationship between biochemical recurrence-free survival (BFS), 6- and 12-month biochemical recurrence (BCR), and several independent variables, including biomarkers. RESULTS: 153 consecutive patients were analyzed. In the univariable Cox regression analysis, none of the biomarkers achieved predictor status (AP: hazard ratio [HR] = 1.03, 95% CI 0.99, 1.01; p = 0.19; CEA: HR = 1.73, 95% CI 0.94, 1.21; p = 0.34; LDH: HR = 1.01, 95% CI 1.00, 1.01; p = 0.05; NSE: HR = 1.02, 95% CI 0.98, 1.06; p = 0.39). The only independent predictor of BFS was the number of positive lesions on PSMA PET (HR = 1.17, 95% CI 1.02, 1.30; p = 0.03). The number of positive lesions was confirmed as independent predictor for BCR within 6 and 12 months (BCR < 6 months: odds ratio [OR] = 1.1, 95% CI 1.0, 1.3; p = 0.04; BCR < 12 months: OR = 1.1, 95% CI 1.0, 1.3; p = 0.04). CONCLUSION: The assessment of AP, CEA, LDH, and NSE before salvage PSMA-RGS showed no prognostic impact. Further studies are needed to identify possible predictors that will optimize patient selection for salvage PSMA-RGS.


Assuntos
Fosfatase Alcalina , Biomarcadores Tumorais , Antígeno Carcinoembrionário , L-Lactato Desidrogenase , Recidiva Local de Neoplasia , Fosfopiruvato Hidratase , Neoplasias da Próstata , Humanos , Masculino , Neoplasias da Próstata/cirurgia , Neoplasias da Próstata/sangue , Idoso , Fosfopiruvato Hidratase/sangue , L-Lactato Desidrogenase/sangue , Recidiva Local de Neoplasia/sangue , Recidiva Local de Neoplasia/diagnóstico por imagem , Biomarcadores Tumorais/sangue , Prognóstico , Antígeno Carcinoembrionário/sangue , Fosfatase Alcalina/sangue , Pessoa de Meia-Idade , Estudos Retrospectivos , Prostatectomia/métodos , Antígenos de Superfície/sangue , Glutamato Carboxipeptidase II/sangue
2.
J Exp Clin Cancer Res ; 43(1): 110, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605423

RESUMO

BACKGROUND: Metastasis is the leading cause of cancer-related death in non-small cell lung cancer (NSCLC) patients. We previously showed that low HERC5 expression predicts early tumor dissemination and a dismal prognosis in NSCLC patients. Here, we performed functional studies to unravel the mechanism underlying the "metastasis-suppressor" effect of HERC5, with a focus on mitochondrial metabolism pathways. METHODS: We assessed cell proliferation, colony formation potential, anchorage-independent growth, migration, and wound healing in NSCLC cell line models with HERC5 overexpression (OE) or knockout (KO). To study early tumor cell dissemination, we used these cell line models in zebrafish experiments and performed intracardial injections in nude mice. Mass spectrometry (MS) was used to analyze protein changes in whole-cell extracts. Furthermore, electron microscopy (EM) imaging, cellular respiration, glycolytic activity, and lactate production were used to investigate the relationships with mitochondrial energy metabolism pathways. RESULTS: Using different in vitro NSCLC cell line models, we showed that NSCLC cells with low HERC5 expression had increased malignant and invasive properties. Furthermore, two different in vivo models in zebrafish and a xenograft mouse model showed increased dissemination and metastasis formation (in particular in the brain). Functional enrichment clustering of MS data revealed an increase in mitochondrial proteins in vitro when HERC5 levels were high. Loss of HERC5 leads to an increased Warburg effect, leading to improved adaptation and survival under prolonged inhibition of oxidative phosphorylation. CONCLUSIONS: Taken together, these results indicate that low HERC5 expression increases the metastatic potential of NSCLC in vitro and in vivo. Furthermore, HERC5-induced proteomic changes influence mitochondrial pathways, ultimately leading to alterations in energy metabolism and demonstrating its role as a new potential metastasis suppressor gene.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Peixe-Zebra , Regulação para Baixo , Camundongos Nus , Proteômica , Metabolismo Energético , Proliferação de Células , Linhagem Celular Tumoral , Movimento Celular , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
3.
J Biol Chem ; : 107289, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38636663

RESUMO

Vitamin B12 (cobalamin or Cbl) functions as a cofactor in two important enzymatic processes in human cells, and life is not sustainable without it. B12 is obtained from food and travels from the stomach, through the intestine and into the bloodstream by three B12-transporting proteins: salivary haptocorrin (HC), gastric intrinsic factor (IF) and transcobalamin (TC), which all bind B12 with high affinity and require proteolytic degradation to liberate Cbl. After intracellular delivery of dietary B12, Cbl in the aquo/hydroxo-Cbl (HOCbl) form can coordinate various nucleophiles, e.g., glutathione (GSH), giving rise to glutathionylcobalamin (GSCbl), a naturally-occurring form of vitamin B12. Currently there is no data showing whether GSCbl is recognized and transported in the human body. Our crystallographic data shows for the first time the complex between a vitamin B12-transporter and GSCbl, which compared to HOCbl, binds TC equally well. Furthermore, sequence analysis and structural comparisons show that TC recognizes and transports GSCbl and that the residues involved are conserved among TCs from different organisms. Interestingly, HC and IF are not structurally tailored to bind GSCbl. This study provides new insights into the interactions between TC and Cbl.

4.
Viruses ; 15(9)2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37766357

RESUMO

Immunosorbent turnip vein clearing virus (TVCV) particles displaying the IgG-binding domains D and E of Staphylococcus aureus protein A (PA) on every coat protein (CP) subunit (TVCVPA) were purified from plants via optimized and new protocols. The latter used polyethylene glycol (PEG) raw precipitates, from which virions were selectively re-solubilized in reverse PEG concentration gradients. This procedure improved the integrity of both TVCVPA and the wild-type subgroup 3 tobamovirus. TVCVPA could be loaded with more than 500 IgGs per virion, which mediated the immunocapture of fluorescent dyes, GFP, and active enzymes. Bi-enzyme ensembles of cooperating glucose oxidase and horseradish peroxidase were tethered together on the TVCVPA carriers via a single antibody type, with one enzyme conjugated chemically to its Fc region, and the other one bound as a target, yielding synthetic multi-enzyme complexes. In microtiter plates, the TVCVPA-displayed sugar-sensing system possessed a considerably increased reusability upon repeated testing, compared to the IgG-bound enzyme pair in the absence of the virus. A high coverage of the viral adapters was also achieved on Ta2O5 sensor chip surfaces coated with a polyelectrolyte interlayer, as a prerequisite for durable TVCVPA-assisted electrochemical biosensing via modularly IgG-assembled sensor enzymes.


Assuntos
Corantes Fluorescentes , Polietilenoglicóis , Polieletrólitos , Imunoglobulina G
5.
J Biotechnol ; 365: 48-53, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36805356

RESUMO

There is a demand for increasing the current manufacturing capacities for recombinant protein-based drugs. Novel expression systems such as plants are being explored as faster, more flexible, and possibly cheaper platforms. Many of these therapeutic proteins are glycosylated and require terminal sialylation to attain full biological activity. In planta protein sialylation has been achieved by the introduction of an entire mammalian biosynthetic pathway in Nicotiana benthamiana, comprising the coordinated expression of the genes for (i) biosynthesis, (ii) activation, (iii) transport, and (iv) transfer of Neu5Ac to terminal galactose. Here we address technical issues that can compromise the efficacy of protein sialylation and how they can be overcome. We used the same reporter protein to compared three strategies to transiently deliver the sialylation pathway-genes evaluating efficacy, heterogeneity and batch-to-batch consistency. In addition, we assess the ability of the single-step method to sialylated additional recombinant proteins with different complexity and number of glycosylation sites. Finally, we show that efficient protein sialylation can be up-scaled for large-scale production of sialylated proteins in plants.


Assuntos
Plantas , Animais , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Glicosilação , Plantas/metabolismo , /metabolismo , Mamíferos
6.
Small ; 19(19): e2206772, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36755199

RESUMO

Nanozymes are nanomaterials with biocatalytic properties under physiological conditions and are one class of artificial enzymes to overcome the high cost and low stability of natural enzymes. However, surface ligands on nanomaterials will decrease the catalytic activity of the nanozymes by blocking the active sites. To address this limitation, ligand-free PtAg nanoclusters (NCs) are synthesized and applied as nanozymes for various enzyme-mimicking reactions. By taking advantage of the mutual interaction of zeolitic imidazolate frameworks (ZIF-8) and Pt precursors, a good dispersion of PtAg bimetal NCs with a diameter of 1.78 ± 0.1 nm is achieved with ZIF-8 as a template. The incorporation of PtAgNCs in the voids of ZIF-8 is confirmed with structural analysis using the atomic pair-distribution function and powder X-ray diffraction. Importantly, the PtAgNCs present good catalytic activity for various enzyme-mimicking reactions, including peroxidase-/catalase- and oxidase-like reactions. Further, this work compares the catalytic activity between PtAg NCs and PtAg nanoparticles with different compositions and finds that these two nanozymes present a converse dependency of Ag-loading on their activity. This study contributes to the field of nanozymes and presents a potential option to prepare ligand-free bimetal biocatalysts with sizes in the nanocluster regime.


Assuntos
Nanopartículas Metálicas , Mimetismo Molecular , Peroxidase/química , Peroxidase/metabolismo , Nanopartículas Metálicas/química , Platina/química , Prata/química , Ligas/química
7.
Cancer Metastasis Rev ; 42(1): 161-182, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36607507

RESUMO

Cancer is one of the three leading causes of death worldwide. Even after successful therapy and achieving remission, the risk of relapse often remains. In this context, dormant residual cancer cells in secondary organs such as the bone marrow constitute the cellular reservoir from which late tumor recurrences arise. This dilemma leads the term of minimal residual disease, which reflects the presence of tumor cells disseminated from the primary lesion to distant organs in patients who lack any clinical or radiological signs of metastasis or residual tumor cells left behind after therapy that eventually lead to local recurrence. Disseminated tumor cells have the ability to survive in a dormant state following treatment and linger unrecognized for more than a decade before emerging as recurrent disease. They are able to breakup their dormant state and to readopt their proliferation under certain circumstances, which can finally lead to distant relapse and cancer-associated death. In recent years, extensive molecular and genetic characterization of disseminated tumor cells and blood-based biomarker has contributed significantly to our understanding of the frequency and prevalence of tumor dormancy. In this article, we describe the clinical relevance of disseminated tumor cells and highlight how latest advances in different liquid biopsy approaches can be used to detect, characterize, and monitor minimal residual disease in breast cancer, prostate cancer, and melanoma patients.


Assuntos
Neoplasias da Mama , Detecção Precoce de Câncer , Masculino , Humanos , Neoplasia Residual/diagnóstico , Neoplasias da Mama/patologia , Biópsia Líquida , Recidiva
8.
Clin Linguist Phon ; 37(8): 766-781, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35672929

RESUMO

The aim of this study was to assess prosodic features in Finnish speakers with (n = 16) and without (n = 20) Parkinson's disease (PD), as there are no published studies to date of prosodic features in Finnish speakers with PD. Chosen metrics were articulation rate (syllables/second), pitch (mean F0) and pitch variability (standard deviation F0), energy proportion below 1 kHz (epb1kHz), normalised pairwise variability index (nPVI), and a novel syllabic prosody index (SPI). Four statistically significant results were found: (1) energy was distributed more to lower frequencies in speakers with PD compared to control speakers, (2) male PD speakers had higher pitch and (3) higher syllabic prosody index compared to control males, and (4) female PD speakers had narrower pitch variability than controls. In this study, PD was manifested as less emphatic and breathier voice. Interestingly, male PD speakers' dysprosody was manifested as an effortful speaking style, whereas female PD speakers exhibited dysprosody with a monotonous speaking style. A novel syllable-based prosody index could be a potentially useful tool in analysing prosody in disordered speech.


Assuntos
Doença de Parkinson , Humanos , Masculino , Adulto , Feminino , Finlândia , Distúrbios da Fala , Idioma , Medida da Produção da Fala
9.
Nat Rev Urol ; 20(3): 158-178, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36451039

RESUMO

Androgen deprivation therapy has a central role in the treatment of advanced prostate cancer, often causing initial tumour remission before increasing independence from signal transduction mechanisms of the androgen receptor and then eventual disease progression. Novel treatment approaches are urgently needed, but only a fraction of promising drug candidates from the laboratory will eventually reach clinical approval, highlighting the demand for critical assessment of current preclinical models. Such models include standard, genetically modified and patient-derived cell lines, spheroid and organoid culture models, scaffold and hydrogel cultures, tissue slices, tumour xenograft models, patient-derived xenograft and circulating tumour cell eXplant models as well as transgenic and knockout mouse models. These models need to account for inter-patient and intra-patient heterogeneity, the acquisition of primary or secondary resistance, the interaction of tumour cells with their microenvironment, which make crucial contributions to tumour progression and resistance, as well as the effects of the 3D tissue network on drug penetration, bioavailability and efficacy.


Assuntos
Células Neoplásicas Circulantes , Neoplasias da Próstata , Masculino , Camundongos , Animais , Humanos , Neoplasias da Próstata/terapia , Antagonistas de Androgênios , Próstata/patologia , Modelos Animais de Doenças , Microambiente Tumoral
10.
Clin Chem ; 68(7): 973-983, 2022 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-35652463

RESUMO

BACKGROUND: Revealing molecular mechanisms linked to androgen receptor activity can help to improve diagnosis and treatment of prostate cancer. Retinoic acid-induced 2 (RAI2) protein is thought to act as a transcriptional coregulator involved in hormonal responses and epithelial differentiation. We evaluated the clinical relevance and biological function of the RAI2 protein in prostate cancer. METHODS: We assessed RAI2 gene expression in the Cancer Genome Atlas prostate adenocarcinoma PanCancer cohort and protein expression in primary tumors (n = 199) by immunohistochemistry. We studied RAI2 gene expression as part of a multimarker panel in an enriched circulating tumor cell population isolated from blood samples (n = 38) of patients with metastatic prostate cancer. In prostate cancer cell lines, we analyzed the consequences of androgen receptor inhibition on RAI2 protein expression and the consequences of RAI2 depletion on the expression of the androgen receptor and selected target genes. RESULTS: Abundance of the RAI2 protein in adenocarcinomas correlated with the androgen receptor; keratins 8, 18, and 19; and E-cadherin as well as with an early biochemical recurrence. In circulating tumor cells, detection of RAI2 mRNA significantly correlated with gene expression of FOLH1, KLK3, RAI2, AR, and AR-V7. In VCaP and LNCaP cell lines, sustained inhibition of hormone receptor activity induced the RAI2 protein, whereas RAI2 depletion augmented the expression of MME, STEAP4, and WIPI1. CONCLUSIONS: The RAI2 protein functions as a transcriptional coregulator of the androgen response in prostate cancer cells. Detection of RAI2 gene expression in blood samples from patients with metastatic prostate cancer indicated the presence of circulating tumor cells.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Células Neoplásicas Circulantes , Neoplasias da Próstata , Linhagem Celular Tumoral , Proteínas Correpressoras , Humanos , Masculino , Células Neoplásicas Circulantes/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/genética , Tretinoína/farmacologia
11.
Int J Mol Sci ; 23(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35269712

RESUMO

Immunotherapeutic treatment approaches are now an integral part of the treatment of many solid tumors. However, attempts to integrate immunotherapy into the treatment of prostate cancer have been disappointing so far. This is due to a highly immunosuppressive, "cold" tumor microenvironment, which is characterized, for example, by the absence of cytotoxic T cells, an increased number of myeloid-derived suppressor cells or regulatory T cells, a decreased number of tumor antigens, or a defect in antigen presentation. The consequence is a reduced efficacy of many established immunotherapeutic treatments such as checkpoint inhibitors. However, a growing understanding of the underlying mechanisms of tumor-immune system interactions raises hopes that immunotherapeutic strategies can be optimized in the future. The aim of this review is to provide an overview of the current status and future directions of immunotherapy development in prostate cancer. Background information on immune response and tumor microenvironment will help to better understand current therapeutic strategies under preclinical and clinical development.


Assuntos
Imunoterapia , Neoplasias da Próstata , Antígenos de Neoplasias , Humanos , Fatores Imunológicos , Masculino , Neoplasias da Próstata/patologia , Linfócitos T Citotóxicos/patologia , Microambiente Tumoral
12.
Cancers (Basel) ; 14(3)2022 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35158823

RESUMO

Breast cancer cells frequently metastasize to bone, where their interaction with bone remodeling cell types enhances osteolytic bone destruction. Importantly, however, whereas skeletal analyses of xenograft models are usually restricted to hindlimb bones, human skeletal metastases are far more frequent in the spine, where trabecular bone mass is higher compared to femur or tibia. Here, we addressed whether breast cancer cells injected into immunocompromised mice metastasize to the spine and if this process is influenced by the amount of trabecular bone. We also took advantage of mice carrying the Col1a1-Krm2 transgene, which display severe osteoporosis. After crossing this transgene into the immunocompromised NSG background we injected MDA-MB-231-SCP2 breast cancer cells and analyzed their distribution three weeks thereafter. We identified more tumor cells and clusters of different size in spine sections than in femora, which allowed influences on bone remodeling cell types to be analyzed by comparing tumor-free to tumor-burdened areas. Unexpectedly, the Col1a1-Krm2 transgene did not affect spreading and metastatic outgrowth of MDA-MB-231-SCP2 cells, suggesting that bone tumor interactions are more relevant at later stages of metastatic progression.

13.
Cancers (Basel) ; 14(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35158869

RESUMO

Experimental studies suggest that bone fractures result in the release of cytokines and cells that might promote metastasis. Obtaining observational data on bone fractures after breast cancer diagnoses related to distant breast cancer recurrence could help to provide first epidemiological evidence for a metastasis-promoting effect of bone fractures. We used data from the largest German statutory health insurance fund (Techniker Krankenkasse, Hamburg, Germany) in a population-based cohort study of breast cancer patients with ICD-10 C50 codes documented between January 2015 and November 2019. The risk of metastasis overall, regional, distant non-bone or bone metastasis related to a fracture was modeled by an adjusted discrete time-to-event analysis with time-dependent exposure. Of 154,000 breast cancer patients, 84,300 fulfilled the inclusion criteria and had a follow-up time of more than half a year. During follow-up, fractures were diagnosed in 13,579 (16.1%) patients. Metastases occurred in 7047 (8.4%) patients; thereof 1544 had affected regional lymph nodes only and 5503 distant metastases. Fractures demonstrated a statistically significant association with subsequent metastasis overall (adjusted HR 1.12, 95% CI 1.04, 1.20). The highest risk for metastasis was observed in patients with subsequent bone metastasis (adjusted HR 1.18, 95% CI 1.05, 1.34), followed by distant non-bone metastasis (adjusted HR 1.16, 95% CI 1.07, 1.26) and lymph node metastasis (adjusted HR 1.08, 95% CI 0.97, 1.21).

14.
J Exp Clin Cancer Res ; 41(1): 46, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35109899

RESUMO

Prostate cancer is a hormone-driven disease and its tumor cell growth highly relies on increased androgen receptor (AR) signaling. Therefore, targeted therapy directed against androgen synthesis or AR activation is broadly used and continually improved. However, a subset of patients eventually progresses to castration-resistant disease. To date, various mechanisms of resistance have been identified including the development of AR-independent aggressive variant prostate cancer based on neuroendocrine transdifferentiation (NED). Here, we review the highly complex processes contributing to NED. Genetic, epigenetic, transcriptional aberrations and posttranscriptional modifications are highlighted and the potential interplay of the different factors is discussed. Background Aggressive variant prostate cancer (AVPC) with traits of neuroendocrine differentiation emerges in a rising number of patients in recent years. Among others, advanced therapies targeting the androgen receptor axis have been considered causative for this development. Cell growth of AVPC often occurs completely independent of the androgen receptor signal transduction pathway and cells have mostly lost the typical cellular features of prostate adenocarcinoma. This complicates both diagnosis and treatment of this very aggressive disease. We believe that a deeper understanding of the complex molecular pathological mechanisms contributing to transdifferentiation will help to improve diagnostic procedures and develop effective treatment strategies. Indeed, in recent years, many scientists have made important contributions to unravel possible causes and mechanisms in the context of neuroendocrine transdifferentiation. However, the complexity of the diverse molecular pathways has not been captured completely, yet. This narrative review comprehensively highlights the individual steps of neuroendocrine transdifferentiation and makes an important contribution in bringing together the results found so far.


Assuntos
Transdiferenciação Celular/imunologia , Neoplasias da Próstata/fisiopatologia , Humanos , Masculino
15.
Semin Cancer Biol ; 78: 49-62, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33582172

RESUMO

Clinical tumor dormancy is specified as an extended latency period between removal of the primary tumor and subsequent relapse in a cancer patient who has been clinically disease-free. In particular, patients with estrogen receptor-positive breast cancer can undergo extended periods of more than five years before they relapse with overt metastatic disease. Recent studies have shown that minimal residual disease in breast cancer patients can be monitored by different liquid biopsy approaches like analysis of circulating tumor cells or cell-free tumor DNA. Even though the biological principles underlying tumor dormancy in breast cancer patients remain largely unknown, clinical observations and experimental studies have identified emerging mechanisms that control the state of tumor dormancy. In this review, we illustrate the latest discoveries on different molecular aspects that contribute to the control of tumor dormancy and distant metastatic relapse, then discuss current treatments affecting minimal residual disease and dormant cancer cells, and finally highlight how novel liquid biopsy based diagnostic methodologies can be integrated into the detection and molecular characterization of minimal residual disease.


Assuntos
Neoplasias da Mama/diagnóstico , Neoplasias da Mama/terapia , Microambiente Tumoral , Neoplasias da Mama/etiologia , Tomada de Decisão Clínica , Gerenciamento Clínico , Suscetibilidade a Doenças , Feminino , Humanos
16.
Eur Urol Open Sci ; 34: 55-58, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34786563

RESUMO

Promising oncological results have been reported for salvage lymph node dissection (SLND) with prostate-specific membrane antigen-radioguided surgery (PSMA-RGS) in patients with prostate cancer (PCa) recurrence. We performed a proof-of-principle study assessing circulating tumour cells (CTCs) as a prognostic marker in patients undergoing SLND. Twenty consecutive patients with recurrent PCa treated with PSMA-RGS during April-July 2019 for PSMA-positive LNs were evaluated. Preoperative CTC counts were assessed using the US Food and Drug Administration-approved CellSearch system. Biochemical recurrence (BCR)-free survival (BFS) and therapy-free survival (TFS) were evaluated using the Kaplan-Meier method. Overall, three patients (15%) were CTC-positive. Postoperatively, CTC-positive patients had more pathologically positive LNs (median 8 vs 2) without a difference in overall LN count. During median follow-up of 10.1 mo, 14 patients experienced BCR and five received further therapy. In Kaplan-Meier analyses, median BFS was 1.4 versus 4.3 mo and median TFS was 10.3 mo versus not reached for CTC-positive versus CTC-negative patients. The main limitations are the small number of patients, the retrospective design, and short follow-up. Our pilot study suggests that CTC-positive patients seem to have worse pathological and short-term oncological outcomes. Therefore, further validation of this biomarker for treatment decision-making before local salvage therapy could be of value. PATIENT SUMMARY: We looked at outcomes for lymph node dissection in patients with recurrence of prostate cancer. We found that outcomes appear to be worse when circulating tumour cells (CTCs) can be measured in the blood preoperatively. We conclude that detection of CTCs indicates spread of tumour cells via the blood, which may limit the benefit of lymph node dissection. Thus, CTCs should be investigated in further studies as a potential marker to help in selecting patients who could benefit from lymph node dissection if their prostate cancer recurs.

17.
Cancers (Basel) ; 13(15)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34359774

RESUMO

Keratins are the main identification markers of circulating tumor cells (CTCs); however, whether their deregulation is associated with the metastatic process is largely unknown. Previously we have shown by in silico analysis that keratin 16 (KRT16) mRNA upregulation might be associated with more aggressive cancer. Therefore, in this study, we investigated the biological role and the clinical relevance of K16 in metastatic breast cancer. By performing RT-qPCR, western blot, and immunocytochemistry, we investigated the expression patterns of K16 in metastatic breast cancer cell lines and evaluated the clinical relevance of K16 expression in CTCs of 20 metastatic breast cancer patients. High K16 protein expression was associated with an intermediate mesenchymal phenotype. Functional studies showed that K16 has a regulatory effect on EMT and overexpression of K16 significantly enhanced cell motility (p < 0.001). In metastatic breast cancer patients, 64.7% of the detected CTCs expressed K16, which was associated with shorter relapse-free survival (p = 0.0042). Our findings imply that K16 is a metastasis-associated protein that promotes EMT and acts as a positive regulator of cellular motility. Furthermore, determining K16 status in CTCs provides prognostic information that helps to identify patients whose tumors are more prone to metastasize.

18.
Cancers (Basel) ; 13(6)2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33801877

RESUMO

Aneuploidy is a consequence of chromosomal instability (CIN) that affects prognosis. Gene expression levels associated with aneuploidy provide insight into the molecular mechanisms underlying CIN. Based on the gene signature whose expression was consistent with functional aneuploidy, the CIN70 score was established. We observed an association of CIN70 score and survival in 519 HNSCC patients in the TCGA dataset; the 15% patients with the lowest CIN70 score showed better survival (p = 0.11), but association was statistically non-significant. This correlated with the expression of 39 proteins of the major repair complexes. A positive association with survival was observed for MSH2, XRCC1, MRE11A, BRCA1, BRCA2, LIG1, DNA2, POLD1, MCM2, RAD54B, claspin, a negative for ERCC1, all related with replication. We hypothesized that expression of these factors leads to protection of replication through efficient repair and determines survival and resistance to therapy. Protein expression differences in HNSCC cell lines did not correlate with cellular sensitivity after treatment. Rather, it was observed that the stability of the DNA replication fork determined resistance, which was dependent on the ATR/CHK1-mediated S-phase signaling cascade. This suggests that it is not the expression of individual DNA repair proteins that causes therapy resistance, but rather a balanced expression and coordinated activation of corresponding signaling cascades.

19.
Nat Plants ; 7(2): 159-171, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33594264

RESUMO

The development of a new crop variety is a time-consuming and costly process due to the reliance of plant breeding on gene shuffling to introduce desired genes into elite germplasm, followed by backcrossing. Here, we propose alternative technology that transiently targets various regulatory circuits within a plant, leading to operator-specified alterations of agronomic traits, such as time of flowering, vernalization requirement, plant height or drought tolerance. We redesigned techniques of gene delivery, amplification and expression around RNA viral transfection methods that can be implemented on an industrial scale and with many crop plants. The process does not involve genetic modification of the plant genome and is thus limited to a single plant generation, is broadly applicable, fast, tunable and versatile, and can be used throughout much of the crop cultivation cycle. The RNA-based reprogramming may be especially useful in plant pathogen pandemics but also for commercial seed production and for rapid adaptation of orphan crops.


Assuntos
Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/genética , Edição de Genes , Melhoramento Vegetal/métodos , Sementes/crescimento & desenvolvimento , Sementes/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta
20.
Methods Mol Biol ; 2205: 125-141, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32809197

RESUMO

Modular cloning systems that rely on type IIS enzymes for DNA assembly have many advantages for complex pathway engineering. These systems are simple to use, efficient, and allow users to assemble multigene constructs by performing a series of one-pot assembly steps, starting from libraries of cloned and sequenced parts. The efficiency of these systems also facilitates the generation of libraries of construct variants. We describe here a protocol for assembly of multigene constructs using the Modular Cloning system MoClo. Making constructs using the MoClo system requires users to first define the structure of the final construct to identify all basic parts and vectors required for the construction strategy. The assembly strategy is then defined following a set of standard rules. Multigene constructs are then assembled using a series of one-pot assembly steps with the set of identified parts and vectors.


Assuntos
Clonagem Molecular/métodos , DNA , Biblioteca Gênica , Engenharia Genética/métodos , Biologia Sintética/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...